
 
1

NEW APPLICATIONS OF THE EXCAVABILITY INDEX FOR SELECTION 
OF TBM TYPES AND PREDICTING THEIR PERFORMANCE 

 
 

Z.T. Bieniawski, President, Bieniawski Design Enterprises. Prescott, Arizona, USA 
B. Celada, Professor, Superior School of Mines, Universidad Politécnica de Madrid, Spain 

J.M. Galera, Director, Geocontrol, Madrid, Spain 
I. Tardáguila, Senior Geotechnician, Geocontrol, Madrid, Spain 

 
Address: Cristobál Bordiu, 19-21. 5a. 28003 Madrid, Spain. e-mail: bcelada@geocontrol.es 

 
 
SYNOPSIS 
 
 
Following the introduction of the Rock Mass Excavability (RME) Index at the ITA Congress 2006 in Korea, 
specific correlations between the RME and the average rate of advance (ARA) were developed for Double 
Shield TBMs, based on data from tunnels constructed in Spain and in Ethiopia. The remaining major task 
was to complete the RME-ARA correlations for Open TBMs and Single Shield TBMs, which was done 
during the later part of 2007, involving statistical analysis of data from the tunnels being constructed in 
Germany, Switzerland and Spain. In the process, very promising results were obtained. The paper 
describes the selected significant developments, with the emphasis on the following findings: 
1. Charts are presented for more accurate determination, of the five input parameters of the RME, using 
graphical representation; 
2. New expressions to evaluate the influence of the efficiency of the TBM crew and the tunnel diameter 
are formulated; 
3. Specific correlations between RMR and the ARA are proposed for Open TBMs and Single Shield BMs; 
4. Specific criteria are established to select the most suitable type of a TBM when planning tunnel 
construction. 
 
 
1. INTRODUCTION 
 
 
The Rock Mass Excavability (RME) index was first presented in 2006 at the ITA World Tunnel Congress 
in Korea [1]. Its purpose is to evaluate rock mass excavability in terms of TBM performance and to serve 
as a tool for choosing the type of TBM most appropriate for tunnel construction in given rock mass 
conditions. 
The RME is calculated using five input parameters having these initial ratings: 
- uniaxial compressive strength of intact rock material, σci: 0 - 15 rating points; 
- drilling rate index, DRI: 0 - 15 points; 
- number of discontinuities present at tunnel face, their orientation with respect to tunnel axis and 
homogeneity at tunnel face: 0 - 40 points; 
- stand up time of the tunnel front: 0 - 25 points; and 
- water inflow at tunnel front: 0 - 5 points. 
The sum of the ratings of the above parameters varies between 0 - 100 rating points and it is expected 
that the higher the RME value, the easier and more productive the excavation of the tunnel. 
However, since its introduction, continued improvements were made to the RME index [2][3] as more 
case histories were collected for Double Shield TBMs and, in addition, a major contribution was made by 
Dr Remo Grandori of SELI SpA in applying this index to Gibe Project tunnels in Ethiopia [4][5]. 
Furthermore, new data were obtained recently by the authors for Open TBMs and Single Shield TBMs 
from tunnels constructed in Germany, Switzerland and Spain. As a result, the score for σci changed from 
0-15 points to 0-25 and for the discontinuities decreased from 0-40 to 0-30 points.This is depicted in Table 
1 and Figure 1. Note that the graphs enable more accurate determination of the RME values than the 
Table 1. 
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TABLE 1. The Ratings for RME Input Parameters 
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Figure 1. Graphs for Determination of the Ratings for RME Input Parameters. 
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2. CRITERIA FOR PREDICTING TBM ADVANCE 
 
 
To utilize the RME as a tool for predicting TBM advance, it was decided to employ the concept of the 
AVERAGE ADVANCE IN A TUNNEL SECTION, otherwise understood as the "Average Rate of Advance 
(ARA)". The ARA is calculated by dividing the length of a characteristic tunnel section over the time of 
completion of the excavation, expressed in meters per day, m/d. 
It is important to note that a characteristic section utilized for obtaining the ARA must meet certain 
conditions: 
- the section length should be > 30 meters; 
- the section should not have significant variations in the value of RME and have a representative rock 
mass quality RMR, that is, not varying by more than 10 points; 
- the section should not feature extraordinary repairs to the TBM; and 
- during the period of section excavation the TBM utilization should be within 30% to 60% of the cycle. 
 
 
2.1 Avoiding Errors of Prediction 
 
 
To prevent errors in prediction, this approach avoids calculating the ARA from the Rate of Penetration 
(PR) which normally varies between 6 and 60 mm/min; this is so because while PR can be accurately 
measured in the TBM controls, but the actual daily ARA depends on a number of factors which constitute 
uncertainties. They are, for example, the mechanical condition of the machine, the excavation strategy 
adopted by the TBM crew and the percentage of TBM utilization exclusively dedicated to excavation. ARA 
is closer than average speed concept of the TBM rather than the peak output in a day. 
 
 
3. THEORETICAL AND REAL ARA 
 
 
The RME was aimed originally at evaluating rock mass excavability by considering the aspects relevant to 
rock mass characteristics and TBM performance, such as the orientation of the tunnel axis with respect to 
the most important set of discontinuities and the standard drilling rate index DRI. Accordingly, to include 
other important factors such as the diameter of the tunnel or the experience and efficiency of the TBM 
crew calls for introduction of the term ARA real (ARAR). At the same time the ARA derived directly from 
the RME was designated [2][3] as ARA theoretical (ARAT). 
The applicable relationship is as follows: 
 

ARAR = ARAT x FE x FA x FD   (1) 
 
where FE = factor of crew efficiency; 
FA = factor of team adaptation to the terrain; and 
FD = factor of tunnel diameter. 
 
 
3.1 Factor of Crew Efficiency (FE) 
 
 
Based on the experience gained during the construction of the Guadarrama twin tunnels in Spain [4], 28 
km long and excavated by four TBMs, each of them manufactured by Wirth and Herrenknecht, and based 
on the proposal by Dr Remo Grandori [5], the following relationship is applied: 
 

FE = 0.7 + FE1 = FE2 + FE3.   (2) 
 
Table 2 provides the appropriate values for the above coefficients. Note that the minimum value of FE is 
0.7 and its maximum is 1.20 which is consistent with the observations made at Guadarrama [3]. 
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Contractor’s 
TBM experience No experience 1 to 5 tunnels 

built 
6 to 10 TBM 
tunnels built 

11 to 20 
TBM tunnels 

built 

>21  
TBM tunnels 

built 
Value of FE1 0 0,05 0,10 0,15 0,2 

 
Qualifications of the 

tunnelling crew 
Little trained and none 

with TBMs 
Trained but none with 

TBMs 
Trained overall and with 

TBMs 
Value of FE2 0 0,1 0,15 

 

Resolutions of 
disputes 

TBM manufacturer 
rep on site 

No TBM 
manufacturer rep 

on site 

Time to resolve 
problems: 
< 1 month 

Time to resolve 
problems: 
> 1 month 

Value of FE3 0.075 0 0.075 0 
 

 
Table 2 Criteria for Evaluation of Coefficients FE1, FE2 and FE3 (after Grandori [5]) 

 
 
3.2 Factor of Adaptation to the Terrain (FA) 
 
 
Also during the construction at Guadarrama, it was discovered that after excavation of a number of 
kilometers of the tunnel, even when having a similar RMR, the rate of advance increased beyond what 
was expected from a typical "learning curve" phenomenon; the increase depended clearly on the 
completed length of the tunnel thus signifying a higher degree of adaptation - by the crew - to the 
encountered terrain. This is depicted in Figure 2 which thus defines Factor FA. 
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Figure 2. Variation of Factor FA with the excavated tunnel length. 

 
 
3.3 Factor of Tunnel Diameter (FD) 
 
 
To include the effect of tunnel diameter - important because in the case histories collected different tunnel 
sizes are involved - a Factor FD was introduced as follows [3]: 
 

FD = 10/D    (3) 
 
where D is the tunnel diameter in meters. Figure 3 shows the variation of this factor with tunnel size. 

27.6.2008 



 
5

FD = 10/D(m)
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Figure 3. Variation of Factor FD with tunnel diameter. 

 
 
4. CORRELATIONS BETWEEN RME AND ARAT FOR THE MOST COMMON TYPES OF TBMs 
 
 
To correlate the RME with the ARA for different types of TBMs, one should first note that the ratings for 
the uniaxial compressive strength of the rock material, as depicted in Figure 1, offer two completely 
different scenarios for TBM performance. It is observed form this figure, for example, that the rating of 16 
points is allocated to terrains with the intact rock strength of 20 MPa as well to those with 130 MPa. Thus, 
assuming that all other input parameters are the same, these two terrains will feature the same RME 
index.  
Yet it is evident that a TBM working in a rock mass having σci= 20 MPa will obtain much higher advance 
than one working in a terrain with σci=130 MPa. 
For this reason, and based on research and tunnelling data [3], it was decided that the most meaningful 
correlations between RME and ARAT for the common TBM types are when two ranges of the uniaxial 
compressive strength of intact rock are selected: the strength σci greater or lesser than 45 MPa. 
 
 
4.1 Open TBMs 
 
 
For this oldest type of TBMs, using grippers to advance and conventional rock support, 49 case histories 
were accumulated of tunnels totalling 1,724 m and leading to the following relationships and their 
correlation coefficients, as depicted in Figure 4: 
 

For σci > 45 MPa  ARAT = 0.839 x RME - 40.8  R=0.763 (4) 
 

For σci < 45 MPa  ARAT = 0.324 x RME - 6.8  R=0.729 (5) 
 
Based on these correlations, we reach the following conclusions: 
- For terrains with σci > 45 MPa, the highest average rate of advance for Open TBM is about 43 m/day, 
while in the case of σci < 45 MPa, the average advance reduces to about 25 m/day. 
- In the case of terrains with σci > 45 MPa, the Open TBM average advance for RME < 55 is at least 6 
m/day. No data are available for RME < 35 in this case, although for σci < 45 MPa the average advance 
for Open TBMs in such terrains would be less than 5 m/day. 
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Figure 4. Correlations between RME and ARAT for Open TBMs. 
 
 
4.2 Single Shield TBMs 
 
 
This type of TBMs does not feature conventional rock reinforcement and lining but instead uses rings of 
concrete segments pre-fabricated, with the machine advance achieved by reacting against its list ring.  
The correlations between RME and ARAT in this case were derived from 62 tunnels sections studied at 
the Tunnels of Guadarrama (Spain) and at the Katzenberg Tunnel in Germany, all totalling 3,620 m in 
length. The following relationships were obtained, as depicted in Figure 5: 
 

For σci > 45 MPa  ARAT = 23 [1 - 242X]  where x = (45 - RMR)/17  (6) 
 

For σci < 45 MPa  ARAT = 10 ln RME – 13  R=0.784   (7) 
 

Based on these correlations, we reach the following conclusions: 
- For terrains with σci < 45 MPa, the highest average rate of advance for Single Shield TBM is about 33 
m/day, while in the case of σci > 45 MPa, the average advance reduces to about 23 m/day. 
- For terrains with σci > 45 MPa, the TBM advance is independent of the value of RME, above RME = 55. 
- In the case of terrains with σci < 45 MPa, the experience indicates that Single Shield TBMs can obtain a 
reasonable rate of advance in the whole range of RME, although data are lacking for RME < 34. 
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Figure 5. Correlations between RME and ARAT for Single Shield TBMs. 

 
 
 
 
 
 

ARAT(m/day)

ARAT = 0,324RME - 6,8
R = 0,729

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

RME

ARAT(m/day)

NO DATA ARE 
AVAILABLE FOR 
RME < 10 FOR 
σci < 45 MPa

II.- For terrains with σci > 45 MPa 

II.- For terrains with σci > 45 MPa I.- For terrains with σci < 45 MPa 

ARAT (m/day) 

I.- For terrains with σci < 45 MPa

ARAT (m/day) ARAT (m/day) 

27.6.2008 



 
7

4.3 Double Shield TBMs 
 
 
TBMs of this type represent a combination of an Open TBM and a Single Shield TBMs, featuring grippers 
when necessary in good conditions, and also an erector of pre-cast lining segments, against which the 
machine can advance if poorer terrain is encountered. 
The correlations between RME and ARAT for Double Shield TBMs are based on the largest number of 
cases: 225 sections from the tunnels of Guadarrama and Abdalajís West in Spain and Gibe II Inlet and 
Gibe II Outlet in Ethiopia, all totalling 20.7 km in length (the average section length being 92 m). The 
following relationships were obtained, as depicted in Figure 6: 
 

For σci > 45 MPa  ARAT = 0.422 x RME - 11.6  R=0.658  (5) 
 

For σci < 45 MPa  ARAT = 0.661 x RME - 20.4  R=0.867  (6) 
 

Based on these correlations, we reach the following conclusions: 
- For terrains with σci < 45 MPa, the highest average rate of advance for Double Shield TBM is about 45 
m/day, while in the case of σci > 45 MPa, the average advance reduces to about 30 m/day. 
- For terrains with σci < 45 MPa and RME < 45, there are not sufficient data to establish a trend. 
- In the case of terrains with σci > 45 MPa and RME < 50 points the data are also lacking but it is expected 
that at RME = 35, for either σci ,the advance will be practically zero. 
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Figure 6. Correlations between RMR and ARAT for Double Shield TBMs. 

 
 
5. SELECTION OF TBM TYPE 
 
 
Each of the three common TBM types can be selected on the basis of the RME index and the range of the 
rock material strength σci as was shown above. The specific criteria may be identified as follows. 
 
5.1 Terrains with σci > 45 MPa 
As depicted in Figure 7a, the combined data for the three common TBM types and “Double Shield 
Optimized”, that represents a combination of the most favourable correlations between Single Shields and 
Double Shields using the grippers, show clear differentiations of performance based on the RME and for 
the case of σci > 45 MPa. These are rock masses characterized by RME = 45 which are conventionally 
designated as "hard rock tunnelling". 
Based on this Figure, the following criteria are evident: 
- Around the values of RME = 75, the average advances of all the three TBM types are about 22 m/day. 
- For terrains with RME > 75, the best results are obtained with Open TBMs. 
- For terrains with RME < 75, the best results are obtained with Double Shield TBMs. 
- The Single Shield TBMs give the poorest performance in these terrains with σci > MPa. 
- Rock masses with RME < 45 present the greatest difficulties for TBM excavation and the three types of 
machines obtain mediocre results in them. 
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Figure 7a. Correlations between RME and ARAT for four types of TBMs in rock masses featuring rock 
material with σci > 45 MPa. 

 
 
5.2 Terrains with σci < 45 MPa 
 
 
Figure 7b presents the combined data for the same TBM types also showing clear differentiations of 
performance based on the RME, but for rock mass conditions featuring rock material strength σci < MPa. 
The following TBM selection criteria are evident for this case: 
- In the terrains with σci < 45 MPa the best results are obtained with Double Shield TBMs of 'Optimized', 
for all values of RME. 
- Only when the terrains have values of RME < 77, the best results belong to Single Shield TBMs, even as 
Double Shield provide similar results but the former are easier to use and it requires a smaller investment. 
- With Open TBMs one obtains the worst performance in these terrains, whatever the value of RME may 
be. 
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Figure 7b. Correlations between RME and ARAT for different types of TBMs in rock masses 

featuring rock material with σci < 45 MPa. 
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6. CONCLUSIONS 
 
 
The work conducted on the concept of the RME during the second half of 2006 and in the year 2007 has 
established significant correlations between the RME index and the Average Rate of Advance theoretical 
(ARAT) for predicting the performance of three types of TBMs used most frequently: Open TBMs, Single 
Shield TBMs and Double Shield TBMs. 
The analysis of these correlations has led to the following general recommendations: 
I. For terrains of very good excavability, with RME > 80 and σci > 45 MPa, the Open TBMs are the 
machines of choice offering the best performance; while in the case of σci < 45 MPa but RME > 80, the 
Double Shield TBMs are preferable. 
II. For terrains of good excavability, with RME falling between 70 and 80 points, all types of TBMs feature 
similar performance if σci > 45 MPa. In the case of the uniaxial compressive strength of the rock material 
being less than 45 MPa, the Open TBMs provide much lesser advances than the single shield TBMs. 
III. For terrains of medium or poor excavability, with RME < 70 points, the Single Shield TBMs are the 
most appropriate. 
 
 
Unfortunately, space limitations do not allow discussion of other correlations obtained between the RME 
and the ARAT specifically for tunnelling in fault zones which enable calculation of the net time of 
excavation with each type of TBMs and hence the selection of the most appropriate TBM type for fault 
conditions encountered. 
At present, work is in progress along two lines to improve further applications of the RME index. The first 
is devoted to calculations of the actual time for completion of tunnel excavation, and the second line of 
investigation is directed to obtaining criteria for improving the performance of the TBMs featuring the RME 
together with the Rock Mass Rating (RMR) and the Specific Energy of Excavation defined elsewhere [2]. 
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